当前位置:C++技术网 > 资讯 > 二叉树遍历及实现

二叉树遍历及实现

更新时间:2015-10-30 23:16:17浏览次数:1+次

一、存储结构

顺序存储:

数据结构存在一块固定的数组中。

#define LENGTH 100
typedef char datatype;
typedef struct node{
    datatype data;
    int lchild,rchild;
    int parent;
}Node;

Node tree[LENGTH];
int length;
int root;


虽然在遍历速度上有一定的优势,但因所占空间比较大,是非主流二叉树。二叉树通常以链式存储。

链式存储:


typedef char datatype;

typedef struct BinNode{
    datatype data;
    struct BinNode* lchild;
    struct BinNode* rchild;
}BinNode;

typedef BinNode* bintree;          //bintree本身是个指向结点的指针

二、二叉树的遍历

遍历即将树的所有结点访问且仅访问一次。按照根节点位置的不同分为前序遍历,中序遍历,后序遍历。

前序遍历:根节点->左子树->右子树

中序遍历:左子树->根节点->右子树

后序遍历:左子树->右子树->根节点

例如:求下面树的三种遍历


前序遍历:abdefgc

中序遍历:debgfac

后序遍历:edgfbca

三、遍历的实现

递归实现(以前序遍历为例,其他的只是输出的位置稍有不同)


void preorder(bintree t){
    if(t){
        printf("%c ",t->data);
        preorder(t->lchild);
        preorder(t->rchild);
    }
}

非递归的实现

因为当遍历过根节点之后还要回来,所以必须将其存起来。考虑到后进先出的特点,选用栈存储。数量确定,以顺序栈存储。

#define SIZE 100
typedef struct seqstack{
    bintree data[SIZE];
    int tag[SIZE];   //为后续遍历准备的
    int top;     //top为数组的下标
}seqstack;

void push(seqstack *s,bintree t){

    if(s->top == SIZE){
        printf("the stack is full\n");
    }else{
        s->top++;
        s->data[s->top]=t;
    }
}

bintree pop(seqstack *s){
    if(s->top == -1){
        return NULL;
    }else{
        s->top--;
        return s->data[s->top+1];
    }
}
先序遍历



void preorder_dev(bintree t){
    seqstack s;
    s.top = -1;     //因为top在这里表示了数组中的位置,所以空为-1
    if(!t){
        printf("the tree is empty\n");
    }else{
        while(t || s.stop != -1){
            while(t){    //只要结点不为空就应该入栈保存,与其左右结点无关    
                  printf("%c ",t->data);
                push(&s,t);
                t= t->lchild;
            }
        }
}


中序遍历


void midorder(bintree t){
    seqstack s;
    s.top = -1;
    if(!t){
        printf("the tree is empty!\n");
    }else{
        while(t ||s.top != -1){
            while(t){
                push(&s,t);
                t= t->lchild;
            }
            t=pop(&s);
            printf("%c ",t->data);
            t=t->rchild;
        }
    }
}


后序遍历


因为后序遍历最后还要要访问根结点一次,所以要访问根结点两次。采取夹标志位的方法解决这个问题。

这段代码非常纠结,对自己有信心的朋友可以尝试独立写一下。反正我是写了很长时间。逻辑不难,我画了一张逻辑图:


void postorder_dev(bintree t){
    seqstack s;
    s.top = -1;
    if(!t){
        printf("the tree is empty!\n");
    }else{
        while(t || s.top != -1){    //栈空了的同时t也为空。
            while(t){
                push(&s,t);
                s.tag[s.top] = 0;   //设置访问标记,0为第一次访问,1为第二次访问
                t= t->lchild;
            }
            if(s.tag[s.top] == 0){  //第一次访问时,转向同层右结点
                t= s.data[s.top];   //左走到底时t是为空的,必须有这步!
                s.tag[s.top]=1;     
                t=t->rchild;
            }else {
                while (s.tag[s.top] == 1){ //找到栈中下一个第一次访问的结点,退出循环时并没有pop所以为其左子结点
                    t = pop(&s);
                    printf("%c ",t->data);
                }
                t = NULL; //必须将t置空。跳过向左走,直接向右走
            }
        }
    }
}
  层次遍历


 队列定义:


#define MAX 1000

typedef struct seqqueue{
    bintree data[MAX];
    int front;
    int rear;
}seqqueue;


void enter(seqqueue *q,bintree t){
    if(q->rear == MAX){
        printf("the queue is full!\n");
    }else{
        q->data[q->rear] = t;
        q->rear++;
    }
}

bintree del(seqqueue *q){
    if(q->front == q->rear){
        return NULL;
    }else{
        q->front++;
        return q->data[q->front-1];
    }
}
  实现



void level_tree(bintree t){
    seqqueue q;
    bintree temp;
    q.front = q.rear = 0;
    if(!t){
        printf("the tree is empty\n");
        return ;
    }
    enter(&q,t);
    while(q.front != q.rear){
        t=del(&q);
        printf("%c ",t->data);
        if(t->lchild){
            enter(&q,t->lchild);
        }
        if(t->rchild){
            enter(&q,t->rchild);
        }
    }
}